
pythorn
Release 1.0.0

Robin Singh

Jan 19, 2022

DOCUMENTATION:

1 Introduction 1
1.1 Stack . 1
1.2 Queue . 4
1.3 Linked List . 10
1.4 Recursion . 15
1.5 Searching Algorithms . 17
1.6 Sorting Algorithms . 21
1.7 Trees . 30
1.8 Graphs . 31
1.9 Dynamic Programming . 36
1.10 Greedy Algorithms . 40
1.11 String Matching . 47

2 Getting Started 51

Python Module Index 53

Index 55

i

ii

CHAPTER

ONE

INTRODUCTION

Pythorn: A python module that contains Python-based minimal and clean example implementations of popular data
structures and all major algorithms!! Mainly for educational purposes

Features!

A python module written in python having all the major algorithms and claen data structure implementaions. Get
the code, time complexities and much more by just importing the required algorithm. A Easiest way to start learning
algorithms and data structures without surfing the internet.

1.1 Stack

Info Stack docs

Author Gourav <gouravpatel11072@gmail.com>

Date 2020-11-30 (Mon, 30 Nov 2020)

Description Added stack operations and infix to postfix.

1.1.1 Quick Start Guide

stack :- Stack is a linear data structure which follows a particular order in which the operations are performed. The
order may be LIFO(Last In First Out) or FILO(First In Last Out).

A stack allows access to only one data item: the last item inserted. If you remove this item, you can access the next-to-
last item inserted, and so on.

A stack is also a handy aid for algorithms applied to certain complex data structures. In “Binary Trees”, we’ll see it
used to help traverse the nodes of a tree.

Notice how the order of the data is reversed. Because the last item pushed is the first one popped.

commonly implemented with linked lists but can be made from arrays too.

operations of stack: pop(), push(), tos(), isEmpty(), display().

import the required data structure
>>> from pythorn.data_structures.stack import Stack

creating a stack
>>> a = Stack()

push elements
(continues on next page)

1

mailto:gouravpatel11072@gmail.com

pythorn, Release 1.0.0

(continued from previous page)

>>> a.push(5)
>>> a.push(20)
>>> a.push(13)

displaying full stack
>>> a.display()
[5, 20, 13]

top element
>>> a.tos()
13

poping the element
>>> a.pop()
13
>>> a.isEmpty()
False

Example Code for Infix To Postfix

Infix expression:The expression of the form a op b. When an operator is in-between every pair of operands.

Postfix expression:The expression of the form a b op. When an operator is followed for every pair of operands.

importing Stack and Infix_Postfix
>>> from pythorn.data_structures.stack import Stack
from pythorn.data_structures.stack import Infix_Postfix

creating a stack
my_stack = Stack()

My Expression
my_exp = "a+c-*/dsefj-+//jk"

passing stack and expression to the Infix_Postfix class
infixpostfix = Infix_Postfix(my_exp,my_stack)
infixpostfix.infixToPostfix()
'a c + * d s e f j / - - / j k / +'

1.1.2 Stack Programs

Author : Robin Singh

Programs List:

1.Stack

2.Infix To Postfix Conversion Using Stack

3.Integer To Binary Conversion Using Stack

2 Chapter 1. Introduction

pythorn, Release 1.0.0

Stack

class pythorn.data_structures.stack.Stack
Stack implementation

push(item)
Pushes an item into the array

pop()
Pops the top element from the stack, and return -1 if the stack is empty

tos()
returns the top element of the stack, else return -1 if stack is empty

size()
returns the length of the stack, else returns -1 if stack is empty

isEmpty()
checks if the stack is empty or not and returns boolean value

display()
if there is an element in the stack then it prints the full stack ,else returns -1

static get_code()

Returns source code

static time_complexity()

Returns time complexity

Infix To Postfix

class pythorn.data_structures.stack.Infix_Postfix(expression=None, stack=None)
Infix To Postfix conversion

static oper(char)
Function of checking whether the given character is an operator or not.

infixToPostfix()
main function for converting infix to postfix using stack.

Returns converted expression

static get_code()

Returns source code

Integer To Binary

Example Code for Integer To Binary

importing Stack and Integer_Binary
>>> from pythorn.data_structures.stack import Stack
>>> from pythorn.data_structures.stack import Integer_Binary

creating a stack
(continues on next page)

1.1. Stack 3

pythorn, Release 1.0.0

(continued from previous page)

>>> my_stack = Stack()

My Number
>>> my_num = 45

passing my_stack and my_num to the Integer_Binary class
>>> integerbinary = Integer_Binary(my_num,my_stack)
>>> integerbinary.IntegerBinary()
'101101'

class pythorn.data_structures.stack.Integer_Binary(Number=None, stack=None)
Integer To Binary Conversion

static get_code()

Returns source code

1.2 Queue

Info Queue Docs

Author Robin Singh <robin25tech@gmail.com>

Date 2020-12-18 (Fri, 18 Dec 2020)

Description Added queue docs with full descriptions

1.2.1 Quick Start Guide

Queue :- A queue is a data structure that is some- what like a stack, except that in a queue the first item inserted is the
first to be removed (First-In-First-Out, FIFO), while in a stack, as we’ve seen, the last item inserted is the first to be
removed (LIFO).

too can be implemented with a linked list or an array.
• Queues are a first in, first out (FIFO) data structure.

• Made with a doubly linked list that only removes from head and adds to tail.

In programming terms, putting an item in the queue is called an “enqueue” and removing an item from the queue is
called “dequeue”.

We can implement the queue in any programming language like C, C++, Java, Python or C#, but the specification is
pretty much the same.

Basic Operations of Queue

A queue is an object or more specifically an abstract data structure(ADT) that allows the following operations:

• Enqueue: Add an element to the end of the queue

• Dequeue: Remove an element from the front of the queue

• IsEmpty: Check if the queue is empty

• IsFull: Check if the queue is full

• Peek: Get the value of the front of the queue without removing it

4 Chapter 1. Introduction

mailto:robin25tech@gmail.com

pythorn, Release 1.0.0

Working of Queue Queue operations work as follows:

• two pointers FRONT and REAR

• FRONT track the first element of the queue

• REAR track the last elements of the queue

• initially, set value of FRONT and REAR to -1

Enqueue Operation
• check if the queue is full

• for the first element, set value of FRONT to 0

• increase the REAR index by 1

• add the new element in the position pointed to by REAR

Dequeue Operation
• check if the queue is empty

• return the value pointed by FRONT

• increase the FRONT index by 1

• for the last element, reset the values of FRONT and REAR to -1

Limitation of Queue
• As you can see in the image below, after a bit of enqueuing and dequeuing, the size of the queue has been

reduced.

• The indexes 0 and 1 can only be used after the queue is reset when all the elements have been dequeued.

• After REAR reaches the last index, if we can store extra elements in the empty spaces (0 and 1), we can
make use of the empty spaces. This is implemented by a modified queue called the Circular queue

Applications of Queue Data Structure
• CPU scheduling, Disk Scheduling

• When data is transferred asynchronously between two processes.The queue is used for synchronization. eg:
IO - Buffers, pipes, file IO, etc

• Handling of interrupts in real-time systems.

• Call Center phone systems use Queues to hold people calling them in an order

Types of queue Simple Queue :- In a simple queue, insertion takes place at the rear and removal occurs at the
front. It strictly follows FIFO rule.

Circular Queue :- In a circular queue, the last element points to the first element making a circular link.The main
advantage of a circular queue over a simple queue is better memory utilization. If the last position is full and the first
position is empty then, an element can be inserted in the first position. This action is not possible in a simple queue.

How Circular Queue Works
• Circular Queue works by the process of circular increment i.e. when we try to increment the pointer and

we reach the end of the queue, we start from the beginning of the queue.

Circular Queue Operations The circular queue work as follows:

• two pointers FRONT and REAR

• FRONT track the first element of the queue

1.2. Queue 5

pythorn, Release 1.0.0

• REAR track the last elements of the queue

• initially, set value of FRONT and REAR to -1

Enqueue Operation
• check if the queue is full

• for the first element, set value of FRONT to 0

• circularly increase the ``REAR index by 1 (i.e. if the rear reaches the end, next it would be at the start of
the queue)

• add the new element in the position pointed to by REAR

Dequeue Operation
• check if the queue is empty

• return the value pointed by FRONT

• circularly increase the FRONT index by 1

• for the last element, reset the values of FRONT and REAR to -1

• However, the check for full queue has a new additional case:

• Case 1: FRONT = 0 && REAR == SIZE - 1

• Case 2: FRONT = REAR + 1

• The second case happens when REAR starts from 0 due to circular increment and when its value is just 1
- less than FRONT, the queue is full.

Applications of Circular Queue
• CPU scheduling

• Memory management

• Traffic Management

Deque (Double Ended Queue) :- Double Ended Queue is a type of queue in which insertion and removal of elements
can be performed from either from the front or rear. Thus, it does not follow FIFO rule (First In First Out).

Types of Deque
• Input Restricted Deque

• In this deque, input is restricted at a single end but allows deletion at both the ends.

• Output Restricted Deque

• In this deque, output is restricted at a single end but allows insertion at both the ends.

Operations on a Deque
• Below is the circular array implementation of deque. In a circular array, if the array is full, we start from

the beginning.

• But in a linear array implementation, if the array is full, no more elements can be inserted. In each of the
operations below, if the array is full, “overflow message” is thrown.

• Before performing the following operations, these steps are followed.

• Take an array (deque) of size n.

• Set two pointers at the first position and set front = -1 and rear = 0.

Insert at the Front This operation adds an element at the front.

6 Chapter 1. Introduction

pythorn, Release 1.0.0

• Check the position of front.

• If front < 1, reinitialize front = n-1 (last index)

• Else, decrease front by 1

• Add the new key 5 into array[front]

Insert at the Rear This operation adds an element to the rear.

• Check if the array is full

• If the deque is full, reinitialize rear = 0

• Else, increase rear by 1.

• Add the new key 5 into array[rear]

Delete from the Front The operation deletes an element from the front.

• Check if the deque is empty

• If the deque is empty (i.e. front = -1), deletion cannot be performed (underflow condition).

• If the deque has only one element (i.e. front = rear), set front = -1 and rear = -1.

• Else if front is at the end (i.e. front = n - 1), set go to the front front = 0.

• Else, front = front + 1

Delete from the Rear This operation deletes an element from the rear.

• Check if the deque is empty

• If the deque is empty (i.e. front = -1), deletion cannot be performed (underflow condition).

• If the deque has only one element (i.e. front = rear), set front = -1 and rear = -1, else follow the steps
below.

• If rear is at the front (i.e. rear = 0), set go to the front rear = n - 1

• Else, rear = rear - 1

Check Empty
• This operation checks if the deque is empty. If front = -1, the deque is empty.

Check Full
• This operation checks if the deque is full. If front = 0 and rear = n - 1 OR front = rear + 1,

the deque is full.

Applications of Deque Data Structure
• In undo operations on software.

• To store history in browsers.

• For implementing both stacks and queues.

Time Complexity The time complexity of all the above methods and operations is constant i.e. O(1).

Below is the simple example for how to use queue using this package.

import the required data structure
>>> from pythorn.data_structures.queue import Queue

creating a stack
(continues on next page)

1.2. Queue 7

pythorn, Release 1.0.0

(continued from previous page)

>>> a = Queue()

enqueue elements
>>> a.enqueue(5)
>>> a.enqueue(13)
>>> a.enqueue(27)

display elements
>>> a.display()
[5, 13, 27]

dequeue elements
>>> a.dequeue()
5
>>> a.dequeue()
13
>>> a.display()
[27]

1.2.2 Queue Programs

Author : Robin Singh Programs List: 1.Queue 2.Circular Queue 3.Double Ended Queue

Queue

class pythorn.data_structures.queue.Queue(length=5)
isEmpty()

checks the queue if its empty or not

enqueue(data)
inserts an element into the queue

dequeue()
removes an element from the queue

Size()
returns size of the queue

display()
displays full queue

static get_code()

Returns source code

static time_complexity()

Returns time complexity

8 Chapter 1. Introduction

pythorn, Release 1.0.0

Circular Queue

class pythorn.data_structures.queue.CircularQueue(length=5)

Parameters length – pass queue length while making object otherwise default value will be 5

isEmpty()
Checks whether queue is empty or not

isQueuefull()
checks whether queue is full or not

enqueue(data)
inserts an element into the queue

dequeue()
removes an element from the queue

display()
displays full queue

static get_code()

Returns source code

static time_complexity()

Returns time complexity

Dequeue

class pythorn.data_structures.queue.Deque(length=5)

Parameters length – pass queue length while making object otherwise default value will be 5

isFull()
checks whether queue is full or not

isEmpty()
Checks whether queue is empty or not

enqueue_start(element)
inserts an element at the start of the queue

enqueue_end(ele)
inserts an element at the end of the queue

dequeue_start()
deletes an element from the start of the queue

dequeue_end()
deletes an element from the end of the queue

display()
displays full queue

static get_code()

Returns source code

1.2. Queue 9

pythorn, Release 1.0.0

static time_complexity()

Returns time complexity

1.3 Linked List

Info Linked List Docs

Author Robin Singh <robin25tech@gmail.com>

Date 2020-12-19 (Fri, 19 Dec 2020)

Description Added Linked list documentaion with time complexity

1.3.1 Quick Start Guide

Linked List :- Arrays had certain disadvantages as data storage structures. In an unordered array, searching is slow,
whereas in an ordered array, insertion is slow. In both kinds of arrays, deletion is slow. Also, the size of an array can’t
be changed after it’s created.

We’ll look at a data storage structure that solves some of these problems: the linked list. Linked lists are probably the
second most commonly used general-purpose storage structures after arrays.

In a linked list, each data item is embedded in a link. A link is an object of a class called something like Link. Each
Link object contains a reference (usually called next) to the next link in the list.

The LinkList class contains only one data item: a reference to the first link on the list. This reference is called first
or``HEAD``. It’s the only permanent information the list maintains about the location of any of the links. It finds the
other links by following the chain of references from first, using each link’s next field.

A linked list data structure includes a series of connected nodes. Here, each node store the data and the address of the
next node.You have to start somewhere, so we give the address of the first node a special name called HEAD.Also, the
last node in the linked list can be identified because its next portion points to NULL.

You might have played the game Treasure Hunt, where each clue includes the information about the next clue. That is
how the linked list operates.

Linked List Time Complexity
Cases Worst Average
Search O(n) O(n)
Insert O(1) O(1)
Deletion O(1) O(1)

• Linked List Applications
– Dynamic memory allocation

– Implemented in stack and queue

– In undo functionality of softwares

– Hash tables, Graphs

Basic Operations On Linked List

• Two important points to remember:

– head points to the first node of the linked list

10 Chapter 1. Introduction

mailto:robin25tech@gmail.com

pythorn, Release 1.0.0

– next pointer of the last node is NULL, so if the next current node is NULL, we have reached the end of the
linked list.

In all of the examples, we will assume that the linked list has three nodes 1 —>2 —>3 with node structure as below:

• How to Traverse a Linked List
– Displaying the contents of a linked list is very simple. We keep moving the temp node to the next one

and display its contents.

– When temp is NULL, we know that we have reached the end of the linked list so we get out of the while
loop.

– The output of this program will be: 1 --->2 --->3 --->

• How to Add Elements to a Linked List

You can add elements to either the beginning, middle or end of the linked list.
• Add to the beginning

– Allocate memory for new node

– Store data

– Change next of new node to point to head

– Change head to point to recently created node

• Add to the End
– Allocate memory for new node

– Store data

– Traverse to last node

– Change next of last node to recently created node

• Add to the Middle
– Allocate memory and store data for new node

– Traverse to node just before the required position of new node

– Change next pointers to include new node in between

• How to Delete from a Linked List

You can delete either from the beginning, end or from a particular position.
• Delete from beginning

– Point head to the second node : head = head->next

• Delete from end
– Traverse to second last element

– Change its next pointer to null

• Delete from middle
– Traverse to element before the element to be deleted

– Change next pointers to exclude the node from the chain

Types of Linked List - There are three common types of Linked List.

• Singly Linked List

1.3. Linked List 11

pythorn, Release 1.0.0

• A singly linked list is a type of linked list that is unidirectional, that is, it can be traversed in only one
direction from head to the last node (tail).

• Each element in a linked list is called a node. A single node contains data and a pointer to the next
node which helps in maintaining the structure of the list.

• Doubly Linked List
– Let’s examine another variation on the linked list: the doubly linked list (not to be con-

fused with the double-ended list). What’s the advantage of a doubly linked list? A potential
problem with ordinary linked lists is that it’s difficult to traverse backward along the list. A
statement like current=current.next steps conveniently to the next link, but there’s no corre-
sponding way to go to the previous link.

– The doubly linked list provides this capability. It allows you to traverse backward as well as
forward through the list. The secret is that each link has two references to other links instead
of one. The first is to the next link, as in ordinary lists. The second is to the previous link.

• Circular Linked List
– A circular linked list is a variation of a linked list in which the last element is linked to the

first element. This forms a circular loop.

– A circular linked list can be either singly linked or doubly linked.

∗ for singly linked list, next pointer of last item points to the first item

∗ In the doubly linked list, prev pointer of the first item points to the last item as well.

Below is the sample example code of linked list using this package

import the required data structure
>>> from pythorn.data_structures.linked_list import SinglyList

creating linked list
>>> a = SinglyList()

inserting element
>>> a.insert(5)
>>> a.insert(8)
>>> a.insert(16)

displaying elements
>>> a.display_list()
16 8 5

delete element
>>> a.delete()
16

size of the linked list
>>> a.size()
2
>>> a.display_list()
8 5

12 Chapter 1. Introduction

pythorn, Release 1.0.0

1.3.2 Linked List Programs

Author : Robin Singh

Programs List:

1.Singly Linked List 2.Doubly Linked List 3.Circular Linked List 4.Stack Using Linked List 5.Queue Using Linked
List

Singly Linked List

class pythorn.data_structures.linked_list.SinglyList
Singly Linked List Implementation

insert(ele)
inserts an element at the start of the linked list

delete()
deletes an element from the start

display_list()
displays current linked list

size()
returns size of the linked list

static get_code()

Returns source code

static time_complexity()

Returns time complexity

Doubly Linked List

class pythorn.data_structures.linked_list.DoublyList
Doubly Linked List Implementation

insert_start(ele)
inserts an element at the start of the linked list

insert_end(ele)
inserts an element at the end of the linked list

delete_start()
deletes an element from the start

delete_end()
deletes an element from the end

display_list()
displays current linked list

size()
returns size of the linked list

static get_code()

1.3. Linked List 13

pythorn, Release 1.0.0

Returns source code

static time_complexity()

Returns time complexity

CircularList

class pythorn.data_structures.linked_list.CircularList
Circular Linked List Implementation

is_Empty()
checks whether list is empty or not

insert_start(e)
inserts an element at the start

insert_end(e)
inserts an element at the end

insert_position(e, pos)
inserts an element at the given position

delete()
deletion of an element from the start

display_list()
displays current linked list

static get_code()

Returns source code

static time_complexity()

Returns time complexity

Stack Using Linked List

class pythorn.data_structures.linked_list.Stack_LinkedList
Stack Using Linked List

push(ele)
for pushing the element into the stack

pop()
for poping out the element

isEmpty()
checks whether stack is empty or not

tos()
tos = top of stack , to find the value of the top most element in the stack

display_stack()
displays full stack

size()
returns size of the stack

14 Chapter 1. Introduction

pythorn, Release 1.0.0

static get_code()

Returns source code

static time_complexity()

Returns time complexity

Queue Using Linked List

class pythorn.data_structures.linked_list.Queue_LinkedList
Implementation of queue uisng linked list

enqueue(ele)
for pushing the element into the queue

dequeue()
for poping out the element

display_queue()
displays full queue

isEmpty()
checks whether queue is empty or not

last_element()
to find the value of the last most element in the queue

size()
returns size of the queue

static get_code()

Returns source code

static time_complexity()

Returns time complexity

1.4 Recursion

1.4.1 Quick Start Guide

stack :- Stack is a linear data structure which follows a particular order in which the operations are performed. The
order may be LIFO(Last In First Out) or FILO(First In Last Out).

A stack allows access to only one data item: the last item inserted. If you remove this item, you can access the next-to-
last item inserted, and so on.

A stack is also a handy aid for algorithms applied to certain complex data structures. In “Binary Trees”, we’ll see it
used to help traverse the nodes of a tree.

Notice how the order of the data is reversed. Because the last item pushed is the first one popped.

commonly implemented with linked lists but can be made from arrays too.

operations of stack: pop(), push(), tos(), isEmpty(), display().

1.4. Recursion 15

pythorn, Release 1.0.0

1.4.2 Recursion Programs

Author : Robin Singh

Programs List : 1 . Factorial 2 . Fibonacci 3 . Tower Of Hanoi 4 . Binary Search (Recursive)

pythorn.data_structures.recursion.tower_of_hanoi(disk, source, destination, auxiliary)
Tower Of Hanoi Implementation Using Recursion

Tower of hanoi is a mathematical puzzle.It consists of three poles and a number of disks of different sizes which
can slide onto any poles.

The puzzle starts with a disk in a neat stack u ascending order of size in one pole, the smallest at the top making
it a conical shape.

The objective of the puzzle is to move all the disks from one pole (Source Pole) to another pole (Destination
pole) with the help of the third pole (auxiliary pole)

The puzzle has two rules : 1 . You Can’t place a larger disk onto smaller disk or vice-versa 2 . Only one disk can
be moved at a time

Moves Reqd to Solve This puzzle is given by : 2^(n)-1

Example : Number Of Dics : 3 Source Pole : A Destination Pole : C Auxiliary Pole : D

Solution : Tower_of_hanoi(3,”A”,”B”,”C”) Move Disk From Source A To Destination B Move Disk From Source
A To Destination C Move Disk From Source B To Destination C Move Disk From Source A To Destination B
Move Disk From Source C To Destination A Move Disk From Source C To Destination B Move Disk From
Source A To Destination B

pythorn.data_structures.recursion.binary_search(A, key, low, high)

Implementation of Binary Search Recursive Method

Below function perform sa binary search on a sorted list and returns the index of the item if it;s present
else returns false

param list a sorted list

param key key to search from given sorted list

return index of key if its found in the sorted list else returns false

Example : A = [5 9 10 45 65 78 98 102 1045] Key = 11

Binary_Search(A,11,0,len(A))

Solution : Not Present

A = [5 9 10 45 65 78 98 102 1045] Key = 65

Binary_Search(A,65,0,len(A))

Solution :

Element is Present at index : 4

16 Chapter 1. Introduction

pythorn, Release 1.0.0

1.5 Searching Algorithms

1.5.1 Quick Start Guide

Searching Algorithms :- Searching is also a common and well-studied task. This task can be described formally
as follows:

Given a list of values, a function that compares two values and a desired value, find the position of the desired value in
the list.

We will look at various algorithms that perform this task:

linear search, which simply checks the values in sequence until the desired value is found

Linear search is the simplest searching algorithm that searches for an element in a list in sequential order. We start at
one end and check every element until the desired element is not found.

Linear Search Algorithm:

LinearSearch(array, key)
for each item in the array
if item == value

return its index

binary search, which requires a sorted input list, and checks for the value in the middle of the list, repeatedly
discarding the half of the list which contains values which are definitely either all larger or all smaller than the desired
value

Binary search can be implemented only on a sorted list of items. If the elements are not sorted already, we need to sort
them first.

• Binary Search Algorithm can be implemented in two ways which are discussed below.
– Iterative Method

– Recursive Method

The recursive method follows the divide and conquer approach.

• Binary Search Algorithm

Iteration Method:

do until the pointers low and high meet each other.
mid = (low + high)/2
if (x == arr[mid])

return mid
else if (x > A[mid]) // x is on the right side

low = mid + 1
else // x is on the left side

high = mid - 1

Recursive Method:

binarySearch(arr, x, low, high)
if low > high

return False
else

mid = (low + high) / 2
(continues on next page)

1.5. Searching Algorithms 17

pythorn, Release 1.0.0

(continued from previous page)

if x == arr[mid]
return mid

else if x < data[mid] // x is on the right side
return binarySearch(arr, x, mid + 1, high)

else // x is on the right side
return binarySearch(arr, x, low, mid - 1)

Jump Search :- Like binary search, Jump search is a searching algorithm for sorted array.

The basic idea is to check fewer elements by jumping ahead by fixed steps or skipping some elements in
the place of searching all elements

For example : suppose we have an array[] of size n and block (to be jumped) size m . then we search at
the indexes array[0],array[m],array[2m],.array[km]and so on.

Once we find the interval (array[km] < X < array[(k+1)m]),we perform a linear search operation from the
index km to find the element x.

Example:: let array : [0,2,6,8,10,21,34,66,89,120,124,300,350,500,549,600]

len(array) = 16

key = 66

Assume block size = 4

1 . Jump from index 0 to index 4 2 . jump from index 4 ot index 8 3 . since element at index 8 (89) is
greater than the key element (66) so we will jump back to index 4 4 . now from here we will perform
linear search from index 4 to index 8 to get our key element 66

Interpolation Search :- Interpoaltion search algorithm is a search algorithm that has been inspired by the way humans search
through a telephone book for a particular name,the key value by which book’s entries are ordered.

It is an improvement above binary search, in binary search ,we always move to the middle element whereas
interpolation search moves to a different element in order to reduce the search space further.

for example : if the value of the key is closer to the last element ,interpolation search is likely to start towards the
end side.

Fibonacci Search :- Fibonacci search is an efficient search algorithm based on divide and conquer principle that
can find an element in the given sorted array with the help of fibonacci series in O(Logn) time complexity.

On Avg , fibonacci search require 4% more comparisons than binary search

There are numerous other searching techniques. Often they rely on the construction of more complex data structures
to facilitate repeated searching. Examples of such structures are hash tables (such as Python’s dictionaries) and prefix
trees. Inexact searches that find elements similar to the one being searched for are also an important topic.

Searching Algorithms Time Complexity
Searching Best Average Worst
Binary Search O(1) O(Logn) O(Logn)
Fibonacci Search O(1) O(Logn) O(Logn)
Interpolation Search O(1) O(Log Logn) O(n)
Jump Search O(1) O(n) O(n)
Linear Search O(1) O(n) O(n)

Below is the simple example for how to use queue using this package.

18 Chapter 1. Introduction

pythorn, Release 1.0.0

impor required algorithm
>>> from pythorn.data_structures.searching import LinearSearch

create list
>>> a = [1,5,9,10,78,90,650]

pass list and key
>>> b = LinearSearch(a,10)

call the function
>>> b.linear_search()
Key found at index : 3

1.5.2 Searching Programs

Author : Robin Singh

Programs List : 1 . Binary Search (Iterative Method) 2 . Fibonacci Search 3 . Interpolation Search 4 . Jump Search 5
. Linear Search

Binary Search

class pythorn.data_structures.searching.BinarySearch(array=None, key=None)
Binary Search Implementation

binary_search()
Implementation of Binary Search Recursive Method

static get_code()

Returns source code

static time_complexity()

Returns time complexity

Fibonacci Search

class pythorn.data_structures.searching.FibonacciSearch(array=None, key=None)
Fibonacci Search Implementation

fibonacci_search()

Returns index of key if its found in the sorted list else returns false

static get_code()

Returns source code

static time_complexity()

Returns time complexity

1.5. Searching Algorithms 19

pythorn, Release 1.0.0

Interpolation Search

class pythorn.data_structures.searching.InterpolationSearch(array=None, key=None)
Interpolation Search Implementation

interpolation_search()

Returns index of key if its found in the sorted list else returns false

static get_code()

Returns source code

static time_complexity()

Returns time complexity

Jump Search

class pythorn.data_structures.searching.JumpSearch(array=None, key=None)
Jump Search Implementation

jump_search()

Returns index of key if its found in the sorted list else returns false

static get_code()

Returns source code

static time_complexity()

Returns time complexity

Linear Search

class pythorn.data_structures.searching.LinearSearch(array=None, key=None)
Linear Search Implementation

linear_search()

Returns index of key if its found in the list else returns false

static get_code()

Returns source code

static time_complexity()

Returns time complexity

20 Chapter 1. Introduction

pythorn, Release 1.0.0

1.6 Sorting Algorithms

1.6.1 Quick Start Guide

Sorting Algorithms :- A Sorting Algorithm is used to rearrange a given array or list elements according to a com-
parison operator on the elements. The comparison operator is used to decide the new order of element in the respective
data structure.

Following are the basic sorting algorithms

• Bubble Sort
– Bubble sort is an algorithm that compares the adjacent elements and swaps their positions if they are

not in the intended order. The order can be ascending or descending.

– How Bubble Sort Works?
∗ Compare two items.

∗ If the one on the left is bigger, swap them.

∗ Move one position right.

∗ Linear Search Algorithm::
bubbleSort(array)

for i = 1 to indexOfLastUnsortedElement-1
if leftElement > rightElement swap leftElement and rightElement

end bubbleSort

– Optimized Bubble Sort
∗ In the simple bubble sort algorithm, all possible comparisons are made even if the array is

already sorted which increases the execution time.

∗ The code can be optimized by introducing an extra variable swapped so After each iter-
ation, if there is no swapping taking place then, there is no need for performing further
iterations.

∗ In such a case, variable swapped is set false. Thus, we can prevent further iterations.

∗ Optimized Algorithm::
bubbleSort(array) swapped = false for i = 1 to indexOfLastUnsortedElement-1

if leftElement > rightElement swap leftElement and rightElement
swapped = true

end bubbleSort

– Efficiency
∗ For 10 data items, this is 45 comparisons (9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1).

∗ In general, where N is the number of items in the array, there are N-1 comparisons on the
first pass, N-2 on the second, and so on. The formula for the sum of such a series is (N–1)
+ (N–2) + (N–3) + ... + 1 = N*(N–1)/2 N*(N–1)/2 is 45 (10*9/2) when N is 10.

• Insertion Sort
– Insertion sort works similarly as we sort cards in our hand in a card game.

1.6. Sorting Algorithms 21

pythorn, Release 1.0.0

– We assume that the first card is already sorted then, we select an unsorted card. If the unsorted card
is greater than the card in hand, it is placed on the right otherwise, to the left. In the same way, other
unsorted cards are taken and put at their right place.

– A similar approach is used by insertion sort.

– Insertion sort is a sorting algorithm that places an unsorted element at its suitable place in each
iteration.

– In most cases the insertion sort is the best of the elementary sorts as described above . It still executes
in O(N2) time, but it’s about twice as fast as the bubble sort and somewhat faster than the selection
sort in normal situations. It’s also not too complex, although it’s slightly more involved than the
bubble and selection sorts. It’s often used as the final stage of more sophisticated sorts, such as
quicksort.

– How Insertion Sort Works?
∗ The first element in the array is assumed to be sorted. Take the second element and store

it separately in key variable

∗ Compare key variable with the first element. If the first element is greater than key,
then key is placed in front of the first element

∗ At this stage first two elements are sorted

∗ Take the third element and compare it with the elements on the left of it. Placed it just
behind the element smaller than it. If there is no element smaller than it, then place it at
the beginning of the array

∗ Place every unsorted element at its correct position till end

∗ Insertion Algorithm::
insertionSort(array) mark first element as sorted for each unsorted element X

store the element X in a variable key for j = lastSortedIndex down to 0

if current element j > X move sorted element to the right by 1

break loop and insert X here

end insertionSort

∗ Efficiency
· How many comparisons and copies does this algorithm require? On the first

pass, it compares a maximum of one item. On the second pass, it’s a maximum
of two items, and so on, up to a maximum of N-1 comparisons on the last pass.
This is 1 + 2 + 3 + . . . + N-1 = N*(N-1)/2

· However, because on each pass an average of only half of the maximum number
of items are actually compared before the insertion point is found, we can divide
by 2, which gives N*(N-1)/4

· The number of copies is approximately the same as the number of comparisons.
However, a copy isn’t as time-consuming as a swap, so for random data this
algorithm runs twice as fast as the bubble sort and faster than the selection sort.

· In any case, like the other sort routines, the insertion sort runs in O(N2) time
for random data.

· For data that is already sorted or almost sorted, the insertion sort does much
better. When data is in order, the condition in the while loop is never true, so
it becomes a simple statement in the outer loop, which executes N-1 times. In

22 Chapter 1. Introduction

pythorn, Release 1.0.0

this case the algorithm runs in O(N) time. If the data is almost sorted, insertion
sort runs in almost O(N) time, which makes it a simple and efficient way to
order a file that is only slightly out of order.

• Selection Sort
– Selection sort is an algorithm that selects the smallest element from an unsorted list in each iteration

and places that element at the beginning of the unsorted list.

– The selection sort improves on the bubble sort by reducing the number of swaps necessary from
O(N2) to O(N). Unfortunately, the number of comparisons remains O(N2). However, the selection
sort can still offer a significant improvement for large records that must be physically moved around
in memory, causing the swap time to be much more important than the comparison time.

– How Selection Sort Works?
∗ Set the first element as minimum

∗ Compare minimum with the 2nd element

∗ If the 2nd element is smaller than minimum, assign the second element as minimum

∗ Compare minimum with the third element

∗ Again, if the third element is smaller, then assign minimum to the third element otherwise
do nothing,The process goes on until the last element

∗ After each iteration, minimum is placed in the front of the unsorted list

∗ For each iteration, indexing starts from the first unsorted element

∗ So bascially the list is divided into two parts: the sublist of items already sorted, which is
built up from left to right and is found at the beginning, and the sublist of items remaining
to be sorted, occupying the remainder of the array

∗ Selection Sort Algorithm:: selectionSort(array, size) repeat (size - 1) times

set the first unsorted element as the minimum for each of the unsorted ele-
ments

if element < currentMinimum set element as new minimum

swap minimum with first unsorted position

end selectionSort

∗ Efficiency
· The selection sort performs the same number of comparisons as the bubble sort:

N*(N-1)/2. For 10 data items, this is 45 comparisons

· However, 10 items require fewer than 10 swaps. With 100 items, 4,950 com-
parisons are required, but fewer than 100 swaps

· For large values of N, the comparison times will dominate, so we would have
to say that the selection sort runs in O(N2) time, just as the bubble sort did

• Counting Sort
– Counting sort is a sorting algorithm that sorts the elements of an array by counting the number of

occurrences of each unique element in the array. The count is stored in an auxiliary array and the
sorting is done by mapping the count as an index of the auxiliary array

– How Counting Sort Works?
∗ Find out the maximum element (let it be max) from the given array

1.6. Sorting Algorithms 23

pythorn, Release 1.0.0

∗ Initialize an array of length max+1 with all elements 0. This array is used for storing the
count of the elements in the array

∗ Store the count of each element at their respective index in count array

∗ For example: if the count of element 3 is 2 then, 2 is stored in the 3rd position of count
array. If element “5” is not present in the array, then 0 is stored in 5th position

∗ Store cumulative sum of the elements of the count array. It helps in placing the elements
into the correct index of the sorted array

∗ Find the index of each element of the original array in the count array. This gives the
cumulative count. Place the element at the index calculated

∗ After placing each element at its correct position, decrease its count by one.

– Counting Sort Algorithm::
countingSort(array, size) max : find largest element in array initialize count array with all

zeros for j <- 0 to size

find the total count of each unique element and store the count at jth index in
count array

for i <- 1 to max find the cumulative sum and store it in count array itself

for j <- size down to 1 restore the elements to array decrease count of each element
restored by 1

– Efficiency
∗ Counting sorts fail when there are large key values (the k in the O(n)). This means that

if you have a large variety of key values, counting sort will be slow

∗ Radix sort can help solve that problem but it does nothing for other issue

∗ Both counting and radix sort are only valid for integer keys

∗ While not a terribly serious limitation, it does mean that Radix Sort’s value for the num-
ber of digits in a key should not be considered constant

• Merge Sort
– mergesort is a much more efficient sorting technique than those we saw in above section, at least in

terms of speed. While the bubble, insertion, and selection sorts take O(N2) time, the mergesort is
O(N*logN)

– For example, if N (the number of items to be sorted) is 10,000, then N2 is 100,000,000,
while``N*logN`` is only 40,000

– If sorting this many items required 40 seconds with the mergesort, it would take almost 28 hours for
the insertion sort.

– Merge Sort uses Divide and Conquer Strategy

– Using the Divide and Conquer technique, we divide a problem into subproblems. When the solu-
tion to each subproblem is ready, we ‘combine’ the results from the subproblems to solve the main
problem.

– The mergesort is also fairly easy to implement. It’s conceptually easier than quicksort and the Shell
short.

– The heart of the mergesort algorithm is the merging of two already-sorted arrays. Merging two
sorted arrays A and B creates a third array, C, that contains all the elements of A and B, also arranged
in sorted order.

24 Chapter 1. Introduction

pythorn, Release 1.0.0

– Similar to quicksort the list of element which should be sorted is divided into two lists. These lists
are sorted independently and then combined. During the combination of the lists the elements are
inserted (or merged) on the correct place in the list

– You divide the half into two quarters, sort each of the quarters, and merge them to make a sorted
half

– How Mergesort Works?
∗ Assume the size of the left array is k, the size of the right array is m and the size of the

total array is n (=k+m).

∗ Create a helper array with the size n

∗ Copy the elements of the left array into the left part of the helper array. This is position
0 until k-1.

∗ Copy the elements of the right array into the right part of the helper array. This is position
k until m-1.

∗ Create an index variable i=0; and j=k+1

∗ Loop over the left and the right part of the array and copy always the smallest value back
into the original array. Once i=k all values have been copied back the original array. The
values of the right array are already in place.

– Efficiency
∗ As we noted, the mergesort runs in O(N*logN) time. There are 24 copies necessary to

sort 8 items. Log28 is 3, so 8*log28 equals 24. This shows that, for the case of 8 items,
the number of copies is proportional to N*log2N

∗ In the mergesort algorithm, the number of comparisons is always somewhat less than
the number of copies.

• Quick Sort
– Quicksort is an algorithm based on divide and conquer approach in which the array is split into

subarrays and these sub-arrays are recursively called to sort the elements.

– Quicksort is a divide-and-conquer algorithm that involves choosing a pivot value from a data-set
and splitting the set into two subsets: a set that contains all values less than the pivot and a set that
contains all values greater than or equal to the pivot. The pivot/split process is recursively applied
to each subset until there are no more subsets to split. The results are combined to form the final
sorted set.

– The challenge of a quicksort is to determine a reasonable midpoint value for dividing the data into
two groups. The efficiency of the algorithm is entirely dependent upon how successfully and accurate
the midpoint value is selected

– Quicksort is undoubtedly the most popular sorting algorithm, and for good reason: In the majority of
situations, it’s the fastest, operating in O(N*logN) time. (This is only true for internal or in-memory
sorting; for sorting data in disk files, other algorithms may be better)

– To understand quicksort, you should be familiar with the partitioning algorithm.

– How Quick Sort Works?
∗ If the array contains only one element or zero elements then the array is sorted.

∗ If the array contains more then one element then:

∗ Select an element from the array. This element is called the “pivot element”. For exam-
ple select the element in the middle of the array.

1.6. Sorting Algorithms 25

pythorn, Release 1.0.0

∗ All elements which are smaller then the pivot element are placed in one array and all
elements which are larger are placed in another array.

∗ Sort both arrays by recursively applying Quicksort to them.

∗ Combine the arrays.

∗ Quicksort can be implemented to sort “in-place”. This means that the sorting takes place
in the array and that no additional array need to be created.

– Quick Sort Algorithm::
quickSort(array, leftmostIndex, rightmostIndex)

if (leftmostIndex < rightmostIndex) pivotIndex = partition(array,leftmostIndex,
rightmostIndex) quickSort(array, leftmostIndex, pivotIndex) quickSort(array,
pivotIndex + 1, rightmostIndex)

partition(array, leftmostIndex, rightmostIndex) set rightmostIndex as pivotIndex stor-
eIndex = leftmostIndex - 1 for i <- leftmostIndex + 1 to rightmostIndex if element[i] <
pivotElement

swap element[i] and element[storeIndex] storeIndex++

swap pivotElement and element[storeIndex+1] return storeIndex + 1

– Efficiency
∗ Quicksort operates in O(N*logN) time. This is generally true of the divide-and-conquer

algorithms, in which a recursive method divides a range of items into two groups and
then calls itself to handle each group.

∗ In this situation the logarithm actually has a base of 2: The running time is proportional
to N*log2N

Time Complexity And Space Complexity

Sorting Algorithms Time Complexity Space Complexity
Sorting Best Average Worst Worst
Bubble Sort O(n) O(n^2) O(n^2) O(1)
Insertion Sort O(n) O(n^2) O(n^2) O(1)
Selection Sort O(n^2) O(n^2) O(n^2) O(1)
Counting Sort O(n+k) O(n+k) O(n+k) O(k)
Merge Sort O(nLogn) O(nLogn) O(nLogn) O(n)
Heap Sort O(nLogn) O(nLogn) O(nLogn) O(1)
Quick Sort O(nLogn) O(nLogn) O(n^2) O(nLogn)
ShellSort O(n) O((nLogn)^2) O((nLogn)^2) O(1)

import required algorithm
>>> from package.pygostructures.data_structures.sorting import BubbleSort

create array
>>> my_array = [4,1,77,2,3,0,99,100,65]

pass the array as argument
>>> b = BubbleSort(my_array)

call the function
(continues on next page)

26 Chapter 1. Introduction

pythorn, Release 1.0.0

(continued from previous page)

>>> b.bubblesort()
Sorted Array : [0, 1, 2, 3, 4, 65, 77, 99, 1

1.6.2 Sorting Algorithms

Author : Robin Singh

Programs List :

1 . Bubble Sort 2 . Counting Sort 3 . Insertion Sort 4 . Merge Sort 5 . Quick Sort 6 . Selection Sort 7 . Shell Sort 8 .
Heap Sort

Bubble Sort

class pythorn.data_structures.sorting.BubbleSort(array=None)
Bubble Sort Implementation

bubblesort()

Returns sorted values

static get_code()
returns source code of the current class

Returns source code

static time_complexity()
returns time complexity of the functions

Returns string

Counting Sort

class pythorn.data_structures.sorting.CountingSort(array=None)
Counting Sort Implementation

counting_sort()

Returns sorted values

static get_code()

Returns source code

static time_complexity()

Returns time complexity

1.6. Sorting Algorithms 27

pythorn, Release 1.0.0

Insertion Sort

class pythorn.data_structures.sorting.InsertionSort(array=None)
Insertion Sort Implementation

insertion_sort()

Returns sorted values

static get_code()

Returns source code

static time_complexity()

Returns time complexity

Merge Sort

class pythorn.data_structures.sorting.MergeSort(array)
Merge Sort Implementation

merge_sort()
function to sort an array using merge sort algorithm

Returns sorted values

static get_code()

Returns source code

static time_complexity()

Returns time complexity

Quick Sort

Example :

import required algorithm
>>> from pythorn.data_structures.sorting import QuickSort

create array
>>> f = [2,6,9,10,100,20,3,6,9,78,98,2,1500]

pass array , value zero and len(array)-2 as an argument
>>> b = QuickSort(f,0,len(f)-2)
>>> b.quick_sort()

call the function
[2, 2, 3, 6, 6, 9, 9, 10, 20, 78, 98, 100, 1500]

class pythorn.data_structures.sorting.QuickSort(array=None, lower=None, upper=None)
Quick Sort Implementation

static partition(a, lb, ub)
function for partition

quick_sort()

Returns sorted values of the given array

28 Chapter 1. Introduction

pythorn, Release 1.0.0

static get_code()

Returns source code

static time_complexity()

Returns time complexity

Selection Sort

class pythorn.data_structures.sorting.SelectionSort(array=None)
Selection Sort Implementation

selection_sort()

Returns sorted values of array

static get_code()

Returns source code

static time_complexity()

Returns time complexity

Shell Sort

class pythorn.data_structures.sorting.ShellSort(array=None)
Shell Sort Implementation

shell_sort()

Returns sorted values of array

static get_code()

Returns source code

static time_complexity()

Returns time complexity

HeapSort

class pythorn.data_structures.sorting.HeapSort(array=None)
Heap Sort Implementation

static heapify(a, n, i)
funtion for converting a binary tree into a Heap data structure

heapSort()

Returns sorted values of array

static get_code()

Returns source code

static time_complexity()

Returns time complexity

1.6. Sorting Algorithms 29

pythorn, Release 1.0.0

1.7 Trees

1.7.1 Quick Start Guide

import required algorithm
>>> from package.pygostructures.data_structures.trees import BinarySearchTree

creating BST
>>> bst = BinarySearchTree()

insert value to be inserted
>>> bst.insert(5)
>>> bst.insert(7)
>>> bst.insert(3)
>>> bst.insert(6)
>>> bst.insert(20)
>>> bst.insert(19)
>>> bst.insert(0)
>>> bst.insert(1)
>>> bst.insert(100)
>>> bst.insert(111)

check if give argument is present in the bst
>>> bst.search(19)
True
>>> bst.search(50)
False

performs inorder traversal
>>> bst.inorder(bst.root)
0-->1-->3-->5-->6-->7-->19-->20-->100-->111

performs preorder traversal
>>> bst.preorder(bst.root)
5-->3-->0-->1-->7-->6-->20-->19-->100-->111

performs postorder
>>> bst.postorder(bst.root)
1-->0-->3-->6-->19-->111-->100-->20-->7-->5

30 Chapter 1. Introduction

pythorn, Release 1.0.0

1.7.2 Trees Programs

Author : Robin Singh

Binary Search Tree

class pythorn.data_structures.trees.BinarySearchTree
Binary Search Tree Funtion

Parameters root – root node
insert(ele)

inserts a node into the tree

search(k)
Function for searching an given element

Returns true if element is present else return false

inorder(temp)
here we first traverse to the leftmost node and then print the data and then move to the rightmost child

Parameters temp – root node

preorder(temp)
here we first print the root node and then traverse towards leftmost node and then to the rightmost node

Parameters temp – root node

postorder(temp)
here we first traverse to the leftmost node and then to the rightmost node and then print the data

Parameters temp – root node

static get_code()

Returns source code

static time_complexity()

Returns time complexity

1.8 Graphs

1.8.1 Quick Start Guide

import required data structures
>>> from pythorn.data_structures.graphs import AdjanceyList

pass number of nodes
>>> a = AdjanceyList(5)

add edge with source node and destination node
>>> a.add_edge(0,1)
>>> a.add_edge(0,3)
>>> a.add_edge(4,3)
>>> a.add_edge(2,4)

printing Adjancey List
>>> a.print_list()

(continues on next page)

1.8. Graphs 31

pythorn, Release 1.0.0

(continued from previous page)

node 1 -> 5
node 2 -> 4
node 3 -> 0 4
node 4 -> 3 2
node 5 -> 5 3

1.8.2 Graph Programs

Author : Robin Singh

Programs List : 1 . Adjancey List with Node Class 2 . Adjancey Matrix 3 . Breath First Search 4 . Depth First Search
5 . Topological Sort

Adjancey List

class pythorn.data_structures.graphs.AdjanceyList(number_of_nodes)
Adjancey list implementation

create_nodes()
function for creating nodes

last_node(first_node)
function for getting the last node

add_edge(node1, node2)
function for adding new edges

Parameters
• node1 – from vertex (source)

• node2 – to vertex (destination)

print_adjancey(node, node_No)

Prints prints adjancey list for a specific node

print_list()
function for printing all the node’s adjancey list

static get_code()

Returns source code

static time_complexity()

Returns time complexity

32 Chapter 1. Introduction

pythorn, Release 1.0.0

Adjancey Matrix

Example :

>>> from pythorn.data_structures.graphs import AdjanceyMatrix
>>> a = AdjanceyMatrix(5)
>>> a.add_edge(1,5)
>>> a.add_edge(1,4)
>>> a.add_edge(2,4)
>>> a.add_edge(3,4)
>>> a.add_edge(3,2)
>>> a.add_edge(3,1)
>>> a.print_matrix()
[0, 0, 1, 1, 1]
[0, 0, 1, 1, 0]
[1, 1, 0, 1, 0]
[1, 1, 1, 0, 0]
[1, 0, 0, 0, 0]
[1, 0, 0, 0, 0]

class pythorn.data_structures.graphs.AdjanceyMatrix(no_of_verices)
Adjancey Matrix Implementation

make_matrix()
function for making matrix of NxN. where n is the number of vertices

add_edge(node1, node2)
function for adding an edge

Parameters
• node1 – vertex 1 (source)

• node2 – vertex 2 (destination)

print_matrix()
function for printing the matrix

static get_code()

Returns source code

static time_complexity()

Returns time complexity

BFS

Example :

import required algorithm
>>> from pythorn.data_structures.graphs import BFS

create graph
>>> graph={ 0: [1, 3,4],
... 1: [2],
... 2: [3],
... 3: [1,4],

(continues on next page)

1.8. Graphs 33

pythorn, Release 1.0.0

(continued from previous page)

... 4: [0,2] }

pass graph and value 0 as argument
>>> bfs1 = BFS(graph,0)

call bfs main function
>>> z = bfs1.bfs()

>>> print(z)
[0, 1, 3, 4, 2]

class pythorn.data_structures.graphs.BFS(graph, start)
BFS implementation with adjancey list

bfs()

Returns BFS path

static get_code()

Returns source code

static time_complexity()

Returns time complexity

DFS

Example :

import required algorithm
>>> from package.pygostructures.data_structures.graphs import DFS

create graph
>>> graph1 = {
... 0: [1, 3,4],
... 1: [2],
... 2: [3],
... 3: [1,4],
... 4: [0,2]}

pass graph and start vertex as argument
>>> dfs1 = DFS(graph1,2)

call the function
>>> z = dfs1.dfs()

>>> print(z)
[2, 3, 1, 4, 0]

class pythorn.data_structures.graphs.DFS(graph, start, path=[])
DFS implementation with adjancey list

dfs()

Returns DFS path

34 Chapter 1. Introduction

pythorn, Release 1.0.0

static get_code()

Returns source code

static time_complexity()

Returns time complexity

Topological Sort

Example :

import required algorithm
>>> from package.pygostructures.data_structures.graphs import *

pass number of vertices as argument
>>> a = TopologicalSort(5)

adding edge with source and destination vertex
>>> a.add_edge(0,3)
>>> a.add_edge(0,4)
>>> a.add_edge(0,3)
>>> a.add_edge(2,3)
>>> a.add_edge(2,1)
>>> a.add_edge(2,4)

printing list
>>> a.print_list()
0 Vertex : -> 3 -> 4 -> 3
3 Vertex : ->
2 Vertex : -> 3 -> 1 -> 4

call main function
>>> a.topological_Sort()
2--> 0--> 3

class pythorn.data_structures.graphs.TopologicalSort(vertices)
Topological Sort Implementation

print_list()
function for printing graph

add_edge(node1, node2)

Parameters
• node1 – from vertex (source)

• node2 – to vertex (destination)

static get_code()

Returns source code

static time_complexity()

Returns time complexity

1.8. Graphs 35

pythorn, Release 1.0.0

1.9 Dynamic Programming

1.9.1 Quick Start Guide

1.9.2 Dynamic Programming

Author : Robin Singh

Programs List :

1 . Bellman Ford 2 . Floyd Warshall 3 . Longest Common Subsequence 4 . Coin Change Problem 1 5 . Coin Change
Problem 2 6 . Subset Sum

Bellman Ford

Implementation of Bellman Ford Algorithm(Dynamic Programming) :

Bellman Ford algorithm helps us find the shortest path from a vertex to all other vertices of a weighted
graph.

It is similar to Dijkstra’s algorithm but it can work with graphs in which edges can have negative weights.

Example :

import required algorithm
>>> from pythorn.algorithms.dynamic_programming import BellmanFord

create graph
>>> graph = {
... 'a':{'b':6,'c':4,'d':5},
... 'b':{'e':-1},
... 'c':{'e':3,'b':-2},
... 'd':{'c':-2,'f':-1},
... 'e':{'f':3},
... 'f':{}
... }

pass graph and source node
>>> a = BellmanFord(graph,'a')

>>> a.bellman_ford()
distances from source {'a': 0, 'b': 1, 'c': 3, 'd': 5, 'e': 0, 'f': 3}
predecssor vertices {'a': None, 'b': 'c', 'c': 'd', 'd': 'a', 'e': 'b', 'f': 'e'}

class pythorn.algorithms.dynamic_programming.BellmanFord(graph, source)
Implementation of Bellman Ford Algorithm(Dynamic Programming) , Bellman Ford algorithm helps us find the
shortest path from a vertex to all other vertices of a weighted graph. It is similar to Dijkstra’s algorithm but it
can work with graphs in which edges can have negative weights.

bellman_ford()

Prints prints all the calculated distances from source and predecssor vertices

static time_complexity()

Returns time complexity

36 Chapter 1. Introduction

pythorn, Release 1.0.0

static get_code()

Returns source code

Floyd Warshall

Implementation of Floyd Warshall’s Algorithm:

Floyd-Warshall Algorithm is an algorithm for finding the shortest path between all the pairs of vertices in a weighted
graph

This algorithm works for both the directed and undirected weighted graphs. But, it does not work for the graphs with
negative cycles

Example :

import required algorithm
>>> from pythorn.algorithms.dynamic_programming import FloydWarshall

initialize a infinity value
>>> INF = 999999999999

create a graph in matrix form
>>> G = [[0, 9, -4, INF],
... [6, 0, INF, 2],
... [INF, 5, 0, INF],
... [INF, INF, 1, 0]]

pass graph and no of vertices as an argument
>>> a = FloydWarshall(G,4)
>>> a.floyd_warshall()
0 1 -4 3
6 0 2 2
11 5 0 7
12 6 1 0

class pythorn.algorithms.dynamic_programming.FloydWarshall(graph, vertex)
Implementation of Floyd Warshall’s Algorithm

Floyd-Warshall Algorithm is an algorithm for finding the shortest path between all the pairs of vertices in a
weighted graph

This algorithm works for both the directed and undirected weighted graphs. But, it does not work for the graphs
with negative cycles

floyd_warshall()

Prints prints final matrix having shortest path between all the pairs of vertices

static time_complexity()

Returns time complexity

static get_code()

Returns source code

1.9. Dynamic Programming 37

pythorn, Release 1.0.0

Longest Common Subsequence

Implementation Of LCS(Dynamic Approch):

Given two sequences,here we have to find the length of longest subsequence present in both of them

Example

LCS for input Sequences “ABCDGH” and “AEDFHR” is “ADH” of length 3.

LCS for input Sequences “AGGTAB” and “GXTXAYB” is “GTAB” of length 4.

Example :

import required algorithm
>>> from pythorn.algorithms.dynamic_programming import LongestCommonSubsequence

entre string1 and string2
>>> string1 = "ABCDEFABC"
>>> string2 = "CDASCVCE"

pass both the strings as argument
>>> a = LongestCommonSubsequence(string1,string2)
>>> a.longest_common_subsequence()
Lenth Of Sequence : 4, And Sequence is : CDAC

class pythorn.algorithms.dynamic_programming.LongestCommonSubsequence(string1, string2)
Implementation Of LCS(Dynamic Approch)

Given two sequences,here we have to find the length of longest subsequence present in both of them

Example :

LCS for input Sequences “ABCDGH” and “AEDFHR” is “ADH” of length 3.

LCS for input Sequences “AGGTAB” and “GXTXAYB” is “GTAB” of length 4.

longest_common_subsequence()

Prints prints longest common subsequence with length of subsequence

static time_complexity()

Returns time complexity

static get_code()
:return:source code

Subset Sum

Implementation of Subset Sum:

Implementation of Subset Sum problem which will return true if at least one sub set exists of the required
sum

Example :

import required algorithm
>>> from package.pygostructures.algorithms.dynamic_programming import SubsetSum

create a array
(continues on next page)

38 Chapter 1. Introduction

pythorn, Release 1.0.0

(continued from previous page)

>>> array = [2,9,7,6,3,4,15,12,32]

pass array and value
>>> a = SubsetSum(array,14)
>>> a.subset_sum()
Yes,There Exists At least One Sub-Set whose sum of the elements is 14

class pythorn.algorithms.dynamic_programming.SubsetSum(array, sum)
Implementation of Subset Sum

Implementation of Subset Sum problem which will return true if at least one sub set exists of the required sum

subset_sum()

Prints prints true if subset exists else prints flase

static time_complexity()

Returns time complexity

static get_code()

Returns source code

Coin Change Problem 1

Coin Exchange:

Implementaion of Number Of Coins Change(Number Of ways to get required Sum)

Example :

import required algorithm
>>> from pythorn.algorithms.dynamic_programming import CoinChange01

pass amount value
>>> a = CoinChange01(90)
>>> a.coin_change()
Number Of Ways To get Sum 90 = 559

class pythorn.algorithms.dynamic_programming.CoinChange01(sum)
Implementaion of Number Of Coins Change(Number Of ways to get required Sum)

coin_change()

Prints Prints no of ways to get the required sum

static time_complexity()

Returns time complexity

static get_code()

Returns source code

1.9. Dynamic Programming 39

pythorn, Release 1.0.0

Coin Change Problem 2

Coin Exchange 2:

Implementaion Of minimum number Of coins required to get the sum of given Value

Example :

import required algorithm
>>> from pythorn.algorithms.dynamic_programming import CoinChange02

#Coins denominations are coins = [2, 3, 5, 10]

pass amount value
>>> a = CoinChange02(50)
>>> a.coin_change()
Minimum Number Of Coins Required to get the sum of 50 = 5 Coins

class pythorn.algorithms.dynamic_programming.CoinChange02(sum)
Implementaion Of minimum number Of coins required to get the sum of given Value

coin_change()

Prints Prints no of coins to get the required sum

static time_complexity()

Returns time complexity

static get_code()

Returns source code

1.10 Greedy Algorithms

1.10.1 Quick Start Guide

Time Complexity

Greedy Algorithms Time Complexity
Activity Selection O(n log n) when sorted else O(n)
Dijkstra O((E+V)Log(V))
Fractional Knapsack O(nLogn)
Kruskal O(ElogE) or O(ElogV)
Prims O(ElogV)
Egyptian Fraction —
Minimum Coin Exchange O(N*logN)

40 Chapter 1. Introduction

pythorn, Release 1.0.0

1.10.2 Greedy Programs

Author : Robin Singh

Programs List: 1 . Activity Selection Problem 2 . Dijkstra’s Algorithm 3 . Egyptian Fraction 4 . Fractional Knapsack
5 . Minimum Coin Exchange Problem 6 . Kruskals Algorithm 7 . Prims Algorithm

Activity Selection

Implementation Of Activity Selection Problem Using Greedy Approch:

here we have n activities with their start and finish times. Select the maximum number of activities that
can be performed by a single person, assuming that a person can only work on a single activity at a time

—Robin Singh

Example :

import required algorithm
>>> from pythorn.algorithms.greedy_algorithm import ActivitySelection

Start values
>>> start_value = [5,9,10,6,2,3,7]

finish values
>>> finish_values = [10,9,6,10,1,3,8]

pass start and finish values as an argument
>>> a = ActivitySelection(start_value,finish_values)
>>> a.activity_selection()
Following Activities Are selected :
Index Start Finish
0 5 --> 10
2 10 --> 6
3 6 --> 10

class pythorn.algorithms.greedy_algorithm.ActivitySelection(start=None, finish=None)
Implementation Of Activity Selection Problem Using Greedy Approch

here we have n activities with their start and finish times. Select the maximum number of activities that can be
performed by a single person, assuming that a person can only work on a single activity at a time

activity_selection()
activity selection main function

Prints Prints a maximum set of activities that can be done by a single person, one at a time

static time_complexity()

Returns time complexity

static get_code()
:return:source code

1.10. Greedy Algorithms 41

pythorn, Release 1.0.0

Dijkstra

Implementation of Dijkstra’s Algorithm:

Dijkstra’s algorithm finds the shortest path in a weighted graph containing only positive edge weights from
a single source

—Robin Singh

Example :

import required algorithm
>>> from pythorn.algorithms.greedy_algorithm import Dijkstra

creating graph
>>> graph = {
... 'a':{'b':4,'h':8},
... 'b':{'a':4,'h':11,'c':8},
... 'c':{'b':8,'i':2,'d':7},
... 'd':{'e':9,'c':7,'f':14},
... 'e':{'d':9,'f':10},
... 'f':{'d':14,'e':10,'g':2},
... 'g':{'i':6,'f':2,'h':1},
... 'h':{'a':8,'b':11,'i':7,'g':1},
... 'i':{'c':2,'g':6,'h':7}
... }

entre source and destination node
>>> source = 'c'
>>> dest = 'h'

pass all the 3 parameters as argument
>>> d = Dijkstra(source,dest,graph)
>>> d.dijkstra()
Single Source Shortest Path :['c', 'i', 'h'] --> COST : 9

class pythorn.algorithms.greedy_algorithm.Dijkstra(start, finish, graph)
Implementation of Dijkstra’s Algorithm

Dijkstra’s algorithm finds the shortest path in a weighted graph containing only positive edge weights from a
single source

dijkstra()
Calculates the optimal path from start to end on the graph

Prints prints the optimal path if exists

42 Chapter 1. Introduction

pythorn, Release 1.0.0

Fractional Knapsack

Implementation Of Fractional Knapsack:

• Given weights and values of n items, we need to put these items in a knapsack of capacity W to get
the maximum total value in the knapsack

• n Fractional Knapsack, we can break items for maximizing the total value of knapsack

• This problem in which we can break an item is also called the fractional knapsack problem

• An efficient solution is to use Greedy approach. The basic idea of the greedy approach is to calculate

the ratio value/weight for each item and sort the item on basis of this ratio. Then take the item with

• the highest ratio and add them until we can’t add the next item as a whole and at the end add the next
item as much as we can

• Which will always be the optimal solution to this problem

—Robin Singh

Example :

import required algorithm
>>> from pythorn.algorithms.greedy_algorithm import FractionalKnapsack

create a list with profit values
>>> profit = [10,9,7,12,30,16]

create a list with weight of the items in the same order
>>> weight = [5,7,3,10,6,7]

capacity of the knapsack
>>> capacity = 15

weight,profit,capacity as an argument in the same order
>>> a = FractionalKnapsack(weight,profit,capacity)

call the function
>>> a.fractional_knapsack()
Fractional Knapsack
Profit :30 Weight : 6 Profit/Weight : 5.0
Profit :7 Weight : 3 Profit/Weight : 2.3333333333333335
Profit :16 Weight : 7 Profit/Weight : 2.2857142857142856
Total Profit : 50.714285714285715

class pythorn.algorithms.greedy_algorithm.FractionalKnapsack(weight, profit, capacity)
Implementation Of Fractional Knapsack

• Given weights and values of n items, we need to put these items in a knapsack of capacity W to get the
maximum total value in the knapsack

• n Fractional Knapsack, we can break items for maximizing the total value of knapsack
• This problem in which we can break an item is also called the fractional knapsack problem
• An efficient solution is to use Greedy approach. The basic idea of the greedy approach is to calculate

the ratio value/weight for each item and sort the item on basis of this ratio. Then take the item with
• the highest ratio and add them until we can’t add the next item as a whole and at the end add the next item

as much as we can
• Which will always be the optimal solution to this problem

fractional_knapsack()

1.10. Greedy Algorithms 43

pythorn, Release 1.0.0

Prints prints maximum total value of the knapsack

static time_complexity()

Returns time complexity

static get_code()

Returns source code

Kruskal’s Algorithm

Implementation of Kruskal’s Algorithm:

Minimum Cost Spanning Tree of a given connected, undirected and weighted graph

It is a greedy algorithm in graph theory as it finds a minimum spanning tree for a connected weighted
graph adding increasing cost at each step

—Robin Singh

Example :

Here we have to import two classes 1st is Kruskal itself and second is Edge (for␣
→˓making source ,destination edge with weight of the edge)

>>> from pythorn.algorithms.greedy_algorithm import Kruskal
>>> from pythorn.algorithms.greedy_algorithm import Edge

Creating Edge (Source,Destination,Weight)
>>> A = Edge(1, 6, 10)
>>> B = Edge(3, 4, 12)
>>> C = Edge(7, 2, 14)
>>> D = Edge(2, 3, 16)
>>> E = Edge(7, 4, 18)
>>> F = Edge(4, 5, 22)
>>> G = Edge(5, 7, 24)
>>> H = Edge(5, 6, 25)
>>> I = Edge(1, 2, 28)

declaring number of nodes
>>> num_nodes = 8

pass number of nodes and list of all the edges as argument
>>> a = Kruskal(num_nodes,[A,B,C,D,E,F,G,H,I])
>>> a.kruskal()
MCST
SOURCE DESTINATION WEIGHT
1 --> 6 --> 10
3 --> 4 --> 12
7 --> 2 --> 14
2 --> 3 --> 16
4 --> 5 --> 22
5 --> 6 --> 25

MCST(MINIMUM COST) : 99

44 Chapter 1. Introduction

pythorn, Release 1.0.0

class pythorn.algorithms.greedy_algorithm.Kruskal(num_nodes=None, edgelist=None)
Implementation of Kruskal’s Algorithm,

Minimum Cost Spanning Tree of a given connected, undirected and weighted graph

It is a greedy algorithm in graph theory as it finds a minimum spanning tree for a connected weighted graph
adding increasing cost at each step

kruskal()
main function

Prints prints minimum cost of the given graph

static time_complexity()

Returns time complexity

static get_code()

Returns source code

Prims

Implementation of prims algorithm:

In Prim’s Algorithm, a conquered territory (initialized with any start vertex) is chosen in which we keep
adding the vertices as we go through the algorithm.

To get the minimum spanning tree, we keep adding vertices to the conquered edges with the greedy
paradignm that we select the edge with the minimum weight of all the edges starting the conquered terri-
tory and ending at the unconquered territory. The end of the minimum weight edge thus chosen is then
added to the conquered territory and removed from the unconquered territory. In such a way, we go on till
the conquered territory spans all the vertices of the graph

Example :
class pythorn.algorithms.greedy_algorithm.Prims(source, graph)

Implementation of prims algorithm

In Prim’s Algorithm, a conquered territory (initialized with any start vertex) is chosen in which we keep adding
the vertices as we go through the algorithm To get the minimum spanning tree, we keep adding vertices to the
conquered edges with the greedy paradignm that we select the edge with the minimum weight of all the edges
starting the conquered territory and ending at the unconquered territory. The end of the minimum weight edge
thus chosen is then added to the conquered territory and removed from the unconquered territory. In such a way,
we go on till the conquered territory spans all the vertices of the graph

prims()

Prints prints MCST for the given graph

static time_complexity()

Returns time complexity

static get_code()
:return:source code

1.10. Greedy Algorithms 45

pythorn, Release 1.0.0

Egyptian Fraction

Implementation of Eqyption Fraction:

Every positive fraction can be represented as sum of unique unit fractions

A fraction is unit fraction if numerator is 1 and denominator is a positive integer, for example 1/3 is a unit
fraction

Such a representation is called Egyptian Fraction as it was used by ancient Egyptians

Example :

>>> from pythorn.algorithms.greedy_algorithm import EgyptianFraction
>>> a = EgyptianFraction(7,19)

>>> a.egyptian_fraction()

1/3 + 1/29 + 1/1653

class pythorn.algorithms.greedy_algorithm.EgyptianFraction(numerator, denominator)
Implementation of Eqyption Fraction

Every positive fraction can be represented as sum of unique unit fractions

A fraction is unit fraction if numerator is 1 and denominator is a positive integer, for example 1/3 is a unit fraction

Such a representation is called Egyptian Fraction as it was used by ancient Egyptians

egyptian_fraction()

Prints prints the value of numnerator/denominator

static time_complexity()

Returns time complexity

static get_code()

Returns source code

Minimum Coin Exchange

Implementation of Minimum Coin Exchange Problem:

Here we have a value V, if we want to make a change for V Rs, and we have an infinite supply of each of
the denominations in Indian currency, i.e., we have an infinite supply of { 1, 2, 5, 10, 20, 50, 100, 500,
2000} valued coins/notes

Then what is the minimum number of coins or notes are needed to make the change

Example :

import required algorithm
>>> from pythorn.algorithms.greedy_algorithm import *

pass money
>>> a = MinimumCoinExchange(2589)
>>> a.minimum_coin_exchange()
2 2 5 10 20 50 500 2000

46 Chapter 1. Introduction

pythorn, Release 1.0.0

class pythorn.algorithms.greedy_algorithm.MinimumCoinExchange(money)
Implementation of Minimum Coin Exchange Problem

Here we have a value V, if we want to make a change for V Rs, and we have an infinite supply of each of the
denominations in Indian currency, i.e., we have an infinite supply of { 1, 2, 5, 10, 20, 50, 100, 500, 2000} valued
coins/notes

Then what is the minimum number of coins or notes are needed to make the change

minimum_coin_exchange()

Prints prints all denominations change

static time_complexity()

Returns time complexity

static get_code()
:return:source code

1.11 String Matching

1.11.1 Quick Start Guide

1.11.2 String Matching Algorithms

Author : Robin Singh

Programs List :

1 . Knuth Morris Pratt String Matching Algorithm 2 . Naive Method 3 . Rabin Karp String Matching Algorithm

Knuth Morris Pratt

Example :

import required algorithm
>>> from package.pygostructures.algorithms.string_matching import KnuthMorrisPratt

string to be searched
>>> string1 = "csk"

main string from which string 1 has to be searched
>>> string2 = "jadhgdajdkcsklsdhajhd"

>>> a = KnuthMorrisPratt(string1,string2)

>>> a.knuth_morris_pratt()
Pattern Found At Index :10

class pythorn.algorithms.string_matching.KnuthMorrisPratt(string1, string2)
Implementation Of KMP string Matching Algorithm

static prefix_generator(pattern, m, n)
utility function for generating prefix

1.11. String Matching 47

pythorn, Release 1.0.0

knuth_morris_pratt()

Prints prints the index if string is matched

static time_complexity()

Returns time complexity

static get_code()

Returns source code

Naive Method

Example :

import required algorithm
>>> from pythorn.algorithms.string_matching import NaiveMethod

string to be searched
>>> string1 = "in"

main string from which string 1 has to be searched
>>> string2 = "djhdjhdinqwert"

>>> a = NaiveMethod(string1,string2)

>>> a.naive_method()
Pattern Found At Index :7

class pythorn.algorithms.string_matching.NaiveMethod(string1, string2)
Implementation Of Naive method string Matching Algorithm

naive_method()

Prints prints index if string is matched

static time_complexity()

Returns time complexity

static get_code()

Returns source code

Rabin Karp

Example :

import required algorithm
>>> from pythorn.algorithms.string_matching import RabinKarp

string to be searched
>>> string1 = "in"

main string from which string 1 has to be searched
>>> string2 = "djhdjhdinqwert"

(continues on next page)

48 Chapter 1. Introduction

pythorn, Release 1.0.0

(continued from previous page)

>>> a = RabinKarp(string1,string2)

>>> a.rabin_karp()
Pattern Found At Index :7

class pythorn.algorithms.string_matching.RabinKarp(string1, string2)
Implementation Of Rabin Karp method string Matching Algorithm

rabin_karp()

Prints prints index if string exists

static time_complexity()

Returns time complexity

static get_code()
:return:source code

1.11. String Matching 49

pythorn, Release 1.0.0

50 Chapter 1. Introduction

CHAPTER

TWO

GETTING STARTED

• For getting started, first download the package using Python package manager

pip install pythorn

• Or you can download the source code from here, and then just install the package using

python setup.py install

51

https://github.com/robin025/pythorn

pythorn, Release 1.0.0

52 Chapter 2. Getting Started

PYTHON MODULE INDEX

p
pythorn.algorithms.dynamic_programming, 36
pythorn.algorithms.greedy_algorithm, 41
pythorn.algorithms.string_matching, 47
pythorn.data_structures.graphs, 32
pythorn.data_structures.linked_list, 13
pythorn.data_structures.queue, 8
pythorn.data_structures.recursion, 16
pythorn.data_structures.searching, 19
pythorn.data_structures.sorting, 27
pythorn.data_structures.stack, 2
pythorn.data_structures.trees, 31

53

pythorn, Release 1.0.0

54 Python Module Index

INDEX

A
activity_selection()

(pythorn.algorithms.greedy_algorithm.ActivitySelection
method), 41

ActivitySelection (class in
pythorn.algorithms.greedy_algorithm), 41

add_edge() (pythorn.data_structures.graphs.AdjanceyList
method), 32

add_edge() (pythorn.data_structures.graphs.AdjanceyMatrix
method), 33

add_edge() (pythorn.data_structures.graphs.TopologicalSort
method), 35

AdjanceyList (class in
pythorn.data_structures.graphs), 32

AdjanceyMatrix (class in
pythorn.data_structures.graphs), 33

B
bellman_ford() (pythorn.algorithms.dynamic_programming.BellmanFord

method), 36
BellmanFord (class in

pythorn.algorithms.dynamic_programming),
36

BFS (class in pythorn.data_structures.graphs), 34
bfs() (pythorn.data_structures.graphs.BFS method), 34
binary_search() (in module

pythorn.data_structures.recursion), 16
binary_search() (pythorn.data_structures.searching.BinarySearch

method), 19
BinarySearch (class in

pythorn.data_structures.searching), 19
BinarySearchTree (class in

pythorn.data_structures.trees), 31
BubbleSort (class in pythorn.data_structures.sorting),

27
bubblesort() (pythorn.data_structures.sorting.BubbleSort

method), 27

C
CircularList (class in

pythorn.data_structures.linked_list), 14

CircularQueue (class in
pythorn.data_structures.queue), 9

coin_change() (pythorn.algorithms.dynamic_programming.CoinChange01
method), 39

coin_change() (pythorn.algorithms.dynamic_programming.CoinChange02
method), 40

CoinChange01 (class in
pythorn.algorithms.dynamic_programming),
39

CoinChange02 (class in
pythorn.algorithms.dynamic_programming),
40

counting_sort() (pythorn.data_structures.sorting.CountingSort
method), 27

CountingSort (class in
pythorn.data_structures.sorting), 27

create_nodes() (pythorn.data_structures.graphs.AdjanceyList
method), 32

D
delete() (pythorn.data_structures.linked_list.CircularList

method), 14
delete() (pythorn.data_structures.linked_list.SinglyList

method), 13
delete_end() (pythorn.data_structures.linked_list.DoublyList

method), 13
delete_start() (pythorn.data_structures.linked_list.DoublyList

method), 13
Deque (class in pythorn.data_structures.queue), 9
dequeue() (pythorn.data_structures.linked_list.Queue_LinkedList

method), 15
dequeue() (pythorn.data_structures.queue.CircularQueue

method), 9
dequeue() (pythorn.data_structures.queue.Queue

method), 8
dequeue_end() (pythorn.data_structures.queue.Deque

method), 9
dequeue_start() (pythorn.data_structures.queue.Deque

method), 9
DFS (class in pythorn.data_structures.graphs), 34
dfs() (pythorn.data_structures.graphs.DFS method), 34
Dijkstra (class in pythorn.algorithms.greedy_algorithm),

55

pythorn, Release 1.0.0

42
dijkstra() (pythorn.algorithms.greedy_algorithm.Dijkstra

method), 42
display() (pythorn.data_structures.queue.CircularQueue

method), 9
display() (pythorn.data_structures.queue.Deque

method), 9
display() (pythorn.data_structures.queue.Queue

method), 8
display() (pythorn.data_structures.stack.Stack

method), 3
display_list() (pythorn.data_structures.linked_list.CircularList

method), 14
display_list() (pythorn.data_structures.linked_list.DoublyList

method), 13
display_list() (pythorn.data_structures.linked_list.SinglyList

method), 13
display_queue() (pythorn.data_structures.linked_list.Queue_LinkedList

method), 15
display_stack() (pythorn.data_structures.linked_list.Stack_LinkedList

method), 14
DoublyList (class in pythorn.data_structures.linked_list),

13

E
egyptian_fraction()

(pythorn.algorithms.greedy_algorithm.EgyptianFraction
method), 46

EgyptianFraction (class in
pythorn.algorithms.greedy_algorithm), 46

enqueue() (pythorn.data_structures.linked_list.Queue_LinkedList
method), 15

enqueue() (pythorn.data_structures.queue.CircularQueue
method), 9

enqueue() (pythorn.data_structures.queue.Queue
method), 8

enqueue_end() (pythorn.data_structures.queue.Deque
method), 9

enqueue_start() (pythorn.data_structures.queue.Deque
method), 9

F
fibonacci_search() (pythorn.data_structures.searching.FibonacciSearch

method), 19
FibonacciSearch (class in

pythorn.data_structures.searching), 19
floyd_warshall() (pythorn.algorithms.dynamic_programming.FloydWarshall

method), 37
FloydWarshall (class in

pythorn.algorithms.dynamic_programming),
37

fractional_knapsack()
(pythorn.algorithms.greedy_algorithm.FractionalKnapsack
method), 43

FractionalKnapsack (class in
pythorn.algorithms.greedy_algorithm), 43

G
get_code() (pythorn.algorithms.dynamic_programming.BellmanFord

static method), 36
get_code() (pythorn.algorithms.dynamic_programming.CoinChange01

static method), 39
get_code() (pythorn.algorithms.dynamic_programming.CoinChange02

static method), 40
get_code() (pythorn.algorithms.dynamic_programming.FloydWarshall

static method), 37
get_code() (pythorn.algorithms.dynamic_programming.LongestCommonSubsequence

static method), 38
get_code() (pythorn.algorithms.dynamic_programming.SubsetSum

static method), 39
get_code() (pythorn.algorithms.greedy_algorithm.ActivitySelection

static method), 41
get_code() (pythorn.algorithms.greedy_algorithm.EgyptianFraction

static method), 46
get_code() (pythorn.algorithms.greedy_algorithm.FractionalKnapsack

static method), 44
get_code() (pythorn.algorithms.greedy_algorithm.Kruskal

static method), 45
get_code() (pythorn.algorithms.greedy_algorithm.MinimumCoinExchange

static method), 47
get_code() (pythorn.algorithms.greedy_algorithm.Prims

static method), 45
get_code() (pythorn.algorithms.string_matching.KnuthMorrisPratt

static method), 48
get_code() (pythorn.algorithms.string_matching.NaiveMethod

static method), 48
get_code() (pythorn.algorithms.string_matching.RabinKarp

static method), 49
get_code() (pythorn.data_structures.graphs.AdjanceyList

static method), 32
get_code() (pythorn.data_structures.graphs.AdjanceyMatrix

static method), 33
get_code() (pythorn.data_structures.graphs.BFS static

method), 34
get_code() (pythorn.data_structures.graphs.DFS static

method), 34
get_code() (pythorn.data_structures.graphs.TopologicalSort

static method), 35
get_code() (pythorn.data_structures.linked_list.CircularList

static method), 14
get_code() (pythorn.data_structures.linked_list.DoublyList

static method), 13
get_code() (pythorn.data_structures.linked_list.Queue_LinkedList

static method), 15
get_code() (pythorn.data_structures.linked_list.SinglyList

static method), 13
get_code() (pythorn.data_structures.linked_list.Stack_LinkedList

static method), 14

56 Index

pythorn, Release 1.0.0

get_code() (pythorn.data_structures.queue.CircularQueue
static method), 9

get_code() (pythorn.data_structures.queue.Deque
static method), 9

get_code() (pythorn.data_structures.queue.Queue
static method), 8

get_code() (pythorn.data_structures.searching.BinarySearch
static method), 19

get_code() (pythorn.data_structures.searching.FibonacciSearch
static method), 19

get_code() (pythorn.data_structures.searching.InterpolationSearch
static method), 20

get_code() (pythorn.data_structures.searching.JumpSearch
static method), 20

get_code() (pythorn.data_structures.searching.LinearSearch
static method), 20

get_code() (pythorn.data_structures.sorting.BubbleSort
static method), 27

get_code() (pythorn.data_structures.sorting.CountingSort
static method), 27

get_code() (pythorn.data_structures.sorting.HeapSort
static method), 29

get_code() (pythorn.data_structures.sorting.InsertionSort
static method), 28

get_code() (pythorn.data_structures.sorting.MergeSort
static method), 28

get_code() (pythorn.data_structures.sorting.QuickSort
static method), 29

get_code() (pythorn.data_structures.sorting.SelectionSort
static method), 29

get_code() (pythorn.data_structures.sorting.ShellSort
static method), 29

get_code() (pythorn.data_structures.stack.Infix_Postfix
static method), 3

get_code() (pythorn.data_structures.stack.Integer_Binary
static method), 4

get_code() (pythorn.data_structures.stack.Stack static
method), 3

get_code() (pythorn.data_structures.trees.BinarySearchTree
static method), 31

H
heapify() (pythorn.data_structures.sorting.HeapSort

static method), 29
HeapSort (class in pythorn.data_structures.sorting), 29
heapSort() (pythorn.data_structures.sorting.HeapSort

method), 29

I
Infix_Postfix (class in pythorn.data_structures.stack),

3
infixToPostfix() (pythorn.data_structures.stack.Infix_Postfix

method), 3

inorder() (pythorn.data_structures.trees.BinarySearchTree
method), 31

insert() (pythorn.data_structures.linked_list.SinglyList
method), 13

insert() (pythorn.data_structures.trees.BinarySearchTree
method), 31

insert_end() (pythorn.data_structures.linked_list.CircularList
method), 14

insert_end() (pythorn.data_structures.linked_list.DoublyList
method), 13

insert_position() (pythorn.data_structures.linked_list.CircularList
method), 14

insert_start() (pythorn.data_structures.linked_list.CircularList
method), 14

insert_start() (pythorn.data_structures.linked_list.DoublyList
method), 13

insertion_sort() (pythorn.data_structures.sorting.InsertionSort
method), 28

InsertionSort (class in
pythorn.data_structures.sorting), 28

Integer_Binary (class in
pythorn.data_structures.stack), 4

interpolation_search()
(pythorn.data_structures.searching.InterpolationSearch
method), 20

InterpolationSearch (class in
pythorn.data_structures.searching), 20

is_Empty() (pythorn.data_structures.linked_list.CircularList
method), 14

isEmpty() (pythorn.data_structures.linked_list.Queue_LinkedList
method), 15

isEmpty() (pythorn.data_structures.linked_list.Stack_LinkedList
method), 14

isEmpty() (pythorn.data_structures.queue.CircularQueue
method), 9

isEmpty() (pythorn.data_structures.queue.Deque
method), 9

isEmpty() (pythorn.data_structures.queue.Queue
method), 8

isEmpty() (pythorn.data_structures.stack.Stack
method), 3

isFull() (pythorn.data_structures.queue.Deque
method), 9

isQueuefull() (pythorn.data_structures.queue.CircularQueue
method), 9

J
jump_search() (pythorn.data_structures.searching.JumpSearch

method), 20
JumpSearch (class in pythorn.data_structures.searching),

20

K
knuth_morris_pratt()

Index 57

pythorn, Release 1.0.0

(pythorn.algorithms.string_matching.KnuthMorrisPratt
method), 47

KnuthMorrisPratt (class in
pythorn.algorithms.string_matching), 47

Kruskal (class in pythorn.algorithms.greedy_algorithm),
44

kruskal() (pythorn.algorithms.greedy_algorithm.Kruskal
method), 45

L
last_element() (pythorn.data_structures.linked_list.Queue_LinkedList

method), 15
last_node() (pythorn.data_structures.graphs.AdjanceyList

method), 32
linear_search() (pythorn.data_structures.searching.LinearSearch

method), 20
LinearSearch (class in

pythorn.data_structures.searching), 20
longest_common_subsequence()

(pythorn.algorithms.dynamic_programming.LongestCommonSubsequence
method), 38

LongestCommonSubsequence (class in
pythorn.algorithms.dynamic_programming),
38

M
make_matrix() (pythorn.data_structures.graphs.AdjanceyMatrix

method), 33
merge_sort() (pythorn.data_structures.sorting.MergeSort

method), 28
MergeSort (class in pythorn.data_structures.sorting), 28
minimum_coin_exchange()

(pythorn.algorithms.greedy_algorithm.MinimumCoinExchange
method), 47

MinimumCoinExchange (class in
pythorn.algorithms.greedy_algorithm), 46

module
pythorn.algorithms.dynamic_programming,

36
pythorn.algorithms.greedy_algorithm, 41
pythorn.algorithms.string_matching, 47
pythorn.data_structures.graphs, 32
pythorn.data_structures.linked_list, 13
pythorn.data_structures.queue, 8
pythorn.data_structures.recursion, 16
pythorn.data_structures.searching, 19
pythorn.data_structures.sorting, 27
pythorn.data_structures.stack, 2
pythorn.data_structures.trees, 31

N
naive_method() (pythorn.algorithms.string_matching.NaiveMethod

method), 48

NaiveMethod (class in
pythorn.algorithms.string_matching), 48

O
oper() (pythorn.data_structures.stack.Infix_Postfix

static method), 3

P
partition() (pythorn.data_structures.sorting.QuickSort

static method), 28
pop() (pythorn.data_structures.linked_list.Stack_LinkedList

method), 14
pop() (pythorn.data_structures.stack.Stack method), 3
postorder() (pythorn.data_structures.trees.BinarySearchTree

method), 31
prefix_generator() (pythorn.algorithms.string_matching.KnuthMorrisPratt

static method), 47
preorder() (pythorn.data_structures.trees.BinarySearchTree

method), 31
Prims (class in pythorn.algorithms.greedy_algorithm),

45
prims() (pythorn.algorithms.greedy_algorithm.Prims

method), 45
print_adjancey() (pythorn.data_structures.graphs.AdjanceyList

method), 32
print_list() (pythorn.data_structures.graphs.AdjanceyList

method), 32
print_list() (pythorn.data_structures.graphs.TopologicalSort

method), 35
print_matrix() (pythorn.data_structures.graphs.AdjanceyMatrix

method), 33
push() (pythorn.data_structures.linked_list.Stack_LinkedList

method), 14
push() (pythorn.data_structures.stack.Stack method), 3
pythorn.algorithms.dynamic_programming

module, 36
pythorn.algorithms.greedy_algorithm

module, 41
pythorn.algorithms.string_matching

module, 47
pythorn.data_structures.graphs

module, 32
pythorn.data_structures.linked_list

module, 13
pythorn.data_structures.queue

module, 8
pythorn.data_structures.recursion

module, 16
pythorn.data_structures.searching

module, 19
pythorn.data_structures.sorting

module, 27
pythorn.data_structures.stack

module, 2

58 Index

pythorn, Release 1.0.0

pythorn.data_structures.trees
module, 31

Q
Queue (class in pythorn.data_structures.queue), 8
Queue_LinkedList (class in

pythorn.data_structures.linked_list), 15
quick_sort() (pythorn.data_structures.sorting.QuickSort

method), 28
QuickSort (class in pythorn.data_structures.sorting), 28

R
rabin_karp() (pythorn.algorithms.string_matching.RabinKarp

method), 49
RabinKarp (class in pythorn.algorithms.string_matching),

49

S
search() (pythorn.data_structures.trees.BinarySearchTree

method), 31
selection_sort() (pythorn.data_structures.sorting.SelectionSort

method), 29
SelectionSort (class in

pythorn.data_structures.sorting), 29
shell_sort() (pythorn.data_structures.sorting.ShellSort

method), 29
ShellSort (class in pythorn.data_structures.sorting), 29
SinglyList (class in pythorn.data_structures.linked_list),

13
size() (pythorn.data_structures.linked_list.DoublyList

method), 13
size() (pythorn.data_structures.linked_list.Queue_LinkedList

method), 15
size() (pythorn.data_structures.linked_list.SinglyList

method), 13
size() (pythorn.data_structures.linked_list.Stack_LinkedList

method), 14
Size() (pythorn.data_structures.queue.Queue method),

8
size() (pythorn.data_structures.stack.Stack method), 3
Stack (class in pythorn.data_structures.stack), 3
Stack_LinkedList (class in

pythorn.data_structures.linked_list), 14
subset_sum() (pythorn.algorithms.dynamic_programming.SubsetSum

method), 39
SubsetSum (class in pythorn.algorithms.dynamic_programming),

39

T
time_complexity() (pythorn.algorithms.dynamic_programming.BellmanFord

static method), 36
time_complexity() (pythorn.algorithms.dynamic_programming.CoinChange01

static method), 39

time_complexity() (pythorn.algorithms.dynamic_programming.CoinChange02
static method), 40

time_complexity() (pythorn.algorithms.dynamic_programming.FloydWarshall
static method), 37

time_complexity() (pythorn.algorithms.dynamic_programming.LongestCommonSubsequence
static method), 38

time_complexity() (pythorn.algorithms.dynamic_programming.SubsetSum
static method), 39

time_complexity() (pythorn.algorithms.greedy_algorithm.ActivitySelection
static method), 41

time_complexity() (pythorn.algorithms.greedy_algorithm.EgyptianFraction
static method), 46

time_complexity() (pythorn.algorithms.greedy_algorithm.FractionalKnapsack
static method), 44

time_complexity() (pythorn.algorithms.greedy_algorithm.Kruskal
static method), 45

time_complexity() (pythorn.algorithms.greedy_algorithm.MinimumCoinExchange
static method), 47

time_complexity() (pythorn.algorithms.greedy_algorithm.Prims
static method), 45

time_complexity() (pythorn.algorithms.string_matching.KnuthMorrisPratt
static method), 48

time_complexity() (pythorn.algorithms.string_matching.NaiveMethod
static method), 48

time_complexity() (pythorn.algorithms.string_matching.RabinKarp
static method), 49

time_complexity() (pythorn.data_structures.graphs.AdjanceyList
static method), 32

time_complexity() (pythorn.data_structures.graphs.AdjanceyMatrix
static method), 33

time_complexity() (pythorn.data_structures.graphs.BFS
static method), 34

time_complexity() (pythorn.data_structures.graphs.DFS
static method), 35

time_complexity() (pythorn.data_structures.graphs.TopologicalSort
static method), 35

time_complexity() (pythorn.data_structures.linked_list.CircularList
static method), 14

time_complexity() (pythorn.data_structures.linked_list.DoublyList
static method), 14

time_complexity() (pythorn.data_structures.linked_list.Queue_LinkedList
static method), 15

time_complexity() (pythorn.data_structures.linked_list.SinglyList
static method), 13

time_complexity() (pythorn.data_structures.linked_list.Stack_LinkedList
static method), 15

time_complexity() (pythorn.data_structures.queue.CircularQueue
static method), 9

time_complexity() (pythorn.data_structures.queue.Deque
static method), 9

time_complexity() (pythorn.data_structures.queue.Queue
static method), 8

time_complexity() (pythorn.data_structures.searching.BinarySearch
static method), 19

Index 59

pythorn, Release 1.0.0

time_complexity() (pythorn.data_structures.searching.FibonacciSearch
static method), 19

time_complexity() (pythorn.data_structures.searching.InterpolationSearch
static method), 20

time_complexity() (pythorn.data_structures.searching.JumpSearch
static method), 20

time_complexity() (pythorn.data_structures.searching.LinearSearch
static method), 20

time_complexity() (pythorn.data_structures.sorting.BubbleSort
static method), 27

time_complexity() (pythorn.data_structures.sorting.CountingSort
static method), 27

time_complexity() (pythorn.data_structures.sorting.HeapSort
static method), 29

time_complexity() (pythorn.data_structures.sorting.InsertionSort
static method), 28

time_complexity() (pythorn.data_structures.sorting.MergeSort
static method), 28

time_complexity() (pythorn.data_structures.sorting.QuickSort
static method), 29

time_complexity() (pythorn.data_structures.sorting.SelectionSort
static method), 29

time_complexity() (pythorn.data_structures.sorting.ShellSort
static method), 29

time_complexity() (pythorn.data_structures.stack.Stack
static method), 3

time_complexity() (pythorn.data_structures.trees.BinarySearchTree
static method), 31

TopologicalSort (class in
pythorn.data_structures.graphs), 35

tos() (pythorn.data_structures.linked_list.Stack_LinkedList
method), 14

tos() (pythorn.data_structures.stack.Stack method), 3
tower_of_hanoi() (in module

pythorn.data_structures.recursion), 16

60 Index

	Introduction
	Stack
	Quick Start Guide
	Stack Programs
	Stack
	Infix To Postfix
	Integer To Binary

	Queue
	Quick Start Guide
	Queue Programs
	Queue
	Circular Queue
	Dequeue

	Linked List
	Quick Start Guide
	Linked List Programs
	Singly Linked List
	Doubly Linked List
	CircularList
	Stack Using Linked List
	Queue Using Linked List

	Recursion
	Quick Start Guide
	Recursion Programs

	Searching Algorithms
	Quick Start Guide
	Searching Programs
	Binary Search
	Fibonacci Search
	Interpolation Search
	Jump Search
	Linear Search

	Sorting Algorithms
	Quick Start Guide
	Sorting Algorithms
	Bubble Sort
	Counting Sort
	Insertion Sort
	Merge Sort
	Quick Sort
	Selection Sort
	Shell Sort
	HeapSort

	Trees
	Quick Start Guide
	Trees Programs
	Binary Search Tree

	Graphs
	Quick Start Guide
	Graph Programs
	Adjancey List
	Adjancey Matrix
	BFS
	DFS
	Topological Sort

	Dynamic Programming
	Quick Start Guide
	Dynamic Programming
	Bellman Ford
	Floyd Warshall
	Longest Common Subsequence
	Subset Sum
	Coin Change Problem 1
	Coin Change Problem 2

	Greedy Algorithms
	Quick Start Guide
	Greedy Programs
	Activity Selection
	Dijkstra
	Fractional Knapsack
	Kruskal’s Algorithm
	Prims
	Egyptian Fraction
	Minimum Coin Exchange

	String Matching
	Quick Start Guide
	String Matching Algorithms
	Knuth Morris Pratt
	Naive Method
	Rabin Karp

	Getting Started
	Python Module Index
	Index

